找答案
首页
【简答题】
设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.
(1)求数列{an}的通项公式,
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
参考答案:
登录免费查看参考答案
参考解析:
登录免费查看参考解析
知识点:
登录免费查看知识点
答题技巧:
登录免费查看答题技巧
被用于:
暂无被用于
刷刷题刷刷变学霸
相关题目:
【单选题】设Sn为等比数列{an}的前n项和,且a2a5=-18,则S2S5=( )
【单选题】若2,2x-1,2x+3成等比数列,则x=( ).
【单选题】设Sn为等比数列{an}的前n项和,若8a2-a5=0,则=( )
【简答题】已知点Pn(an,bn)(n∈N*)都在直线l:y=2x+2上,P1为直线l与x轴的交点,数列{an}成等差数列,公差为1.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)若f(n)=an,n为奇数bn,n为偶数问是否存在k∈N*,使得f(k+5)=2f(k)-5成立?若存在,求出k的值,若不存在,说明理由;(Ⅲ)求证:1|p1p2|2+1|p1p3|2+…+1|p1pn|2<25(n≥2,n∈N...
【简答题】设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.(1)求数列{an}的通项公式,(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
【简答题】等比数列{a n}中,S 3=7,S 6=63,则a n=________.
【简答题】已知数列{an}满足下列条件:a1=1,a2=r(r>0),且数列{anan+1}是一个以q(q>0)为公比的等比数列.设bn=a2n-1+a2n(n∈N*),Sn=b1+b2+…+bn.(1)求数列{bn}的通项公式bn;(2)求limn→∞1sn.
【单选题】在等差数列{an} 中,a3+a5+2a10=8,则此数列的前13项的和等于[ ]
【单选题】数列{an}的前n项和Sn=3n-c,则c=1是数列{an}为等比数列的( )
【简答题】若数列{an}(n∈N*)是等差数列,则有数列bn=(n∈N*) 也是等差数列;类比上述性质,相应地:若数列{cn}是等比数列,且cn>0,则有数列dn=( )也是等比数列.
刷刷题刷刷变学霸